Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
World J Gastroenterol ; 30(10): 1431-1449, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596485

RESUMO

BACKGROUND: Serotonin receptor 2B (5-HT2B receptor) plays a critical role in many chronic pain conditions. The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea (IBS-D) was investigated in the present study. AIM: To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D. METHODS: Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls. The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores. The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint. Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1 (TRPV1) expression were examined following 5-HT2B receptor antagonist administration. Changes in visceral sensitivity after administration of the TRPV1 antagonist were recorded. RESULTS: Here, we observed greater expression of the 5-HT2B receptor in the colonic mucosa of patients with IBS-D than in that of controls, which was correlated with abdominal pain scores. Intracolonic instillation of acetic acid and wrap restraint induced obvious chronic visceral hypersensitivity and increased fecal weight and fecal water content. Exogenous 5-HT2B receptor agonist administration increased visceral hypersensitivity, which was alleviated by successive administration of a TRPV1 antagonist. IBS-D rats receiving the 5-HT2B receptor antagonist exhibited inhibited visceral hyperalgesia.Moreover, the percentage of 5-HT2B receptor-immunoreactive (IR) cells surrounded by TRPV1-positive cells (5-HT2B receptor I+) and total 5-HT2B receptor IR cells (5-HT2B receptor IT) in IBS-D rats was significantly reduced by the administration of a 5-HT2B receptor antagonist. CONCLUSION: Our finding that increased expression of the 5-HT2B receptor contributes to visceral hyperalgesia by inducing TRPV1 expression in IBS-D patients provides important insights into the potential mechanisms underlying IBS-D-associated visceral hyperalgesia.


Assuntos
Síndrome do Intestino Irritável , Humanos , Ratos , Animais , Síndrome do Intestino Irritável/patologia , Receptor 5-HT2B de Serotonina , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Serotonina/metabolismo , Diarreia/etiologia , Receptores de Serotonina , Dor Abdominal/etiologia , Dor Abdominal/metabolismo , Acetatos
2.
J Insect Physiol ; 153: 104619, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301801

RESUMO

Extreme temperatures threaten species under climate change and can limit range expansions. Many species cope with changing environments through plastic changes. This study tested phenotypic changes in heat and cold tolerance under hardening and acclimation in the melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae), an agricultural pest of many vegetables. We first measured the critical thermal maximum (CTmax) of the species by the knockdown time under static temperatures and found support for an injury accumulation model of heat stress. The inferred knockdown time at 39 °C was 82.22 min. Rapid heat hardening for 1 h at 35 °C slightly increased CTmax by 1.04 min but decreased it following exposure to 31 °C by 3.46 min and 39 °C by 6.78 min. Heat acclimation for 2 and 4 days significantly increased CTmax at 35 °C by 1.83, and 6.83 min, respectively. Rapid cold hardening at 0 °C and 4 °C for 2 h, and cold acclimation at 10 °C for 3 days also significantly increased cold tolerance by 6.09, 5.82, and 2.00 min, respectively, while cold hardening at 8 °C for 2 h and acclimation at 4 °C and 10 °C for 5 days did not change cold stress tolerance. Mortality at 4 °C for 3 and 5 days reached 24.07 % and 43.22 % respectively. Our study showed plasticity for heat and cold stress tolerance in T. palmi, but the thermal and temporal space for heat stress induction is narrower than for cold stress induction.


Assuntos
Termotolerância , Tisanópteros , Animais , Temperatura Baixa , Aclimatação , Temperatura
3.
Neuroreport ; 35(3): 160-169, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305109

RESUMO

To investigate the distribution and characteristics of lymphatic vessels within the central nervous system, we focus on the meninges of the spinal cord and brain parenchyma in mice. Additionally, we aim to provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels, while optimizing the perfusion parameters to improve histomorphological quality. Male C57BL/6J mice were randomly divided into four groups, with each group assigned a specific perfusion parameter based on perfusion volumes and temperatures. Immunofluorescence staining of lymphatics and blood vessels was performed on both meningeal and the brain tissue samples. Statistical analysis was performed using one-way analysis of variance to compare the groups, and a significant level of P < 0.05 was considered statistically significant. Our study reports the presence of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice. We highlight the crucial role of high perfusion volume of paraformaldehyde with low temperature in fixation for achieving optimal results. We provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice, which contribute to our understanding of the distribution and characteristics of lymphatic vessels within the central nervous system. Further research is warranted to explore the functional implications of these lymphatic vessels and their potential therapeutic significance in neurodegenerative and neuroinflammatory diseases.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Meninges/diagnóstico por imagem , Encéfalo , Perfusão
4.
Pharmacol Res ; 201: 107080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272335

RESUMO

Thanks to the advancements in bioinformatics, drugs, and other interventions that modulate microbes to treat diseases have been emerging continuously. In recent years, an increasing number of databases related to traditional Chinese medicine (TCM) or gut microbes have been established. However, a database combining the two has not yet been developed. To accelerate TCM research and address the traditional medicine and micro ecological system connection between short board, we have developed the most comprehensive micro-ecological database of TCM. This initiative includes the standardization of the following advantages: (1) A repeatable process achieved through the standardization of a retrieval strategy to identify literature. This involved identifying 419 experiment articles from PubMed and six authoritative databases; (2) High-quality data integration achieved through double-entry extraction of literature, mitigating uncertainties associated with natural language extraction; (3) Implementation of a similar strategy aiding in the prediction of mechanisms of action. Leveraging drug similarity, target entity similarity, and known drug-target entity association, our platform enables the prediction of the effects of a new herb or acupoint formulas using the existing data. In total, MicrobeTCM includes 171 diseases, 725 microbes, 1468 herb-formulas, 1032 herbs, 15780 chemical compositions, 35 acupoint-formulas, and 77 acupoints. For further exploration, please visit https://www.microbetcm.com.


Assuntos
Medicina Tradicional Chinesa , Microbiota , Medicina Tradicional , Biologia Computacional , Bases de Dados Factuais
5.
Recent Pat Anticancer Drug Discov ; 19(3): 308-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723963

RESUMO

BACKGROUND: Gefitinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), frequently causes side effects when used to treat non-small cell lung cancer. OBJECTIVE: The purpose of this experiment was to investigate the side effect of gefitinib on the skin and colon of mice. METHODS: Male Balb/c nu-nu nude mice aged 4-5 weeks were used as xenograft tumor models, and gefitinib at 150 mg/kg and 225 mg/kg was started at 9 days after the xenograft tumor grew out. The mice's weights and tumor volumes were tracked concurrently, and the mouse skin adverse reactions and diarrhea were observed during the treatment. The animal tissues were subjected to biochemical and pathological evaluations after 14 days. RESULTS: Gefitinib effectively decreased the size and weight of transplanted tumors in nude mice, while also lowering body weight and raising indexes of the liver and spleen. Gefitinib could cause skin adverse reactions and diarrhea in mice. Further pathological investigation revealed tight junction- related markers in the mice's skin and colon to be reduced and macrophages and neutrophils to be increased after gefitinib treatment. CONCLUSION: The findings imply that gefitinib has negative effects on the skin and colon. Gefitinib- induced skin and colon adverse reactions in mice have been successfully modeled in this study.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Camundongos , Animais , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos Nus , Quinazolinas/efeitos adversos , Receptores ErbB/metabolismo , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Colo/metabolismo , Colo/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/efeitos adversos , Resistencia a Medicamentos Antineoplásicos
6.
Adv Sci (Weinh) ; 11(5): e2306140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044276

RESUMO

Traditional Chinese medicine (TCM) is widely used in clinical practice, including skin and gastrointestinal diseases. Here, a potential TCM QY305 (T-QY305) is reported that can modulate the recruitment of neutrophil in skin and colon tissue thus reducing cutaneous adverse reaction and diarrhea induced by epidermal growth factor receptor inhibitors (EGFRIs). On another hand, the T-QY305 formula, through regulating neutrophil recruitment features would highlight the presence of N-QY305, a subunit nanostructure contained in T-QY305, and confirm its role as potentially being the biomaterial conferring to T-QY305 its pharmacodynamic features. Here, the clinical records of two patients are analyzed expressing cutaneous adverse reaction and demonstrate positive effect of T-QY305 on the simultaneous inhibition of both cutaneous adverse reaction and diarrhea in animal models. The satisfying results obtained from T-QY305, lead to further process to the isolation of N-QY305 from T-QY305, in order to demonstrate that the potency of T-QY305 originates from the nanostructure N-QY305. Compared to T-QY305, N-QY305 exhibits higher potency upon reducing adverse reactions. The data represent a promising candidate for reducing cutaneous adverse reaction and diarrhea, meanwhile proposing a new strategy to highlight the presence of nanostructures being the "King" of Chinese medicine formula as the pharmacodynamic basis.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Animais , Humanos , Medicina Tradicional Chinesa/efeitos adversos , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/química , Diarreia/induzido quimicamente , Diarreia/prevenção & controle
7.
Pharmazie ; 78(9): 196-200, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38037218

RESUMO

Endoplasmic reticulum stress (ER stress) is suggested to promote cardiomyocyte apoptosis and ultimately lead to ischemic injury. Inhibition of ER stress-induced apoptosis may be a therapeutic strategy for MI injury. Astragaloside-IV (AST) from Astragalus membranaceus (Fisch) Bge, was reported to have cardioprotective properties. In this study, we investigated the protective effect of AST on cardiomyocytes against hypoxia injury by regulating ER stress and inhibiting apoptosis. H9c2 cardiomyocytes were divided into three groups, normal group, hypoxia group and AST group. Cell viability was determined by CCK-8 assay. Intracellular reactive oxygen species (ROS) production was detected by DCFH-DA (2,7- dichloro-dihydrofluorescein diacetate) florescent staining. The study showed that AST treatment could significantly increase the cell viability of H9c2 cells exposed to hypoxia. Furthermore, AST could restrain cell apoptosis and decrease the production of ROS. Compared with normal group, the protein levels of Bax, caspase-3, caspase-9, GRP78, p-eIF2α, and CHOP were enhanced in the hypoxia group, whereas the protein level of Bcl-2 was dramatically reduced. Compared with hypoxia group, AST markedly inhibited the phosphorylation of eIF2α and the expression of caspase-3, caspase-9 and CHOP, and promoted the protein expression of Bcl-2. Thus, AST can inhibit the ER stress-mediated apoptosis, partly through the eIF2α/CHOP pathway suppression to inhibit ER stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , Miócitos Cardíacos , Humanos , Caspase 3/metabolismo , Caspase 9/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Estresse do Retículo Endoplasmático , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipóxia/tratamento farmacológico , Apoptose
8.
Front Cell Infect Microbiol ; 13: 1332786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106469

RESUMO

[This corrects the article DOI: 10.3389/fcimb.2023.1145824.].

9.
Am J Physiol Cell Physiol ; 325(4): C1106-C1118, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746698

RESUMO

Sarcolemmal ATP-sensitive potassium (KATP) channels play a vital role in cardioprotection. Cardiac KATP channels are enriched in caveolae and physically interact with the caveolae structural protein caveolin-3 (Cav3). Disrupting caveolae impairs the regulation of KATP channels through several signaling pathways. However, the direct functional effect of Cav3 on KATP channels is still poorly understood. Here, we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and showed that Cav3 greatly reduced KATP channel surface density and current amplitude in a caveolae-independent manner. A screen of Cav3 functional domains revealed that a 25 amino acid region in the membrane attachment domain of Cav3 is the minimal effective segment (MAD1). The peptide corresponding to the MAD1 segment decreased KATP channel current in a concentration-dependent manner with an IC50 of ∼5 µM. The MAD1 segment prevented KATP channel recycling, thus decreasing KATP channel surface density and abolishing the cardioprotective effect of ischemic preconditioning. Our research identified the Cav3 MAD1 segment as a novel negative regulator of KATP channel recycling, providing pharmacological potential in the treatment of diseases with KATP channel trafficking defects.NEW & NOTEWORTHY Cardiac KATP channels physically interact with caveolin-3 in caveolae. In this study, we investigated the functional effect of caveolin-3 on KATP channel activity and identified a novel segment (MAD1) in the C-terminus domain of Caveolin-3 that negatively regulates KATP channel surface density and current amplitude by impairing KATP channel recycling. The peptide corresponding to the MAD1 segment abolished the cardioprotective effect of ischemic preconditioning.

10.
Front Pharmacol ; 14: 1197257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408765

RESUMO

Background: KATP channels have diverse roles, including regulation of insulin secretion and blood flow, and protection against biological stress responses and are excellent therapeutic targets. Different subclasses of KATP channels exist in various tissue types due to the unique assemblies of specific pore-forming (Kir6.x) and accessory (SURx) subunits. The majority of pharmacological openers and blockers act by binding to SURx and are poorly selective against the various KATP channel subclasses. Methods and Results: We used 3D models of the Kir6.2/SUR homotetramers based on existing cryo-EM structures of channels in both the open and closed states to identify a potential agonist binding pocket in a functionally critical area of the channel. Computational docking screens of this pocket with the Chembridge Core chemical library of 492,000 drug-like compounds yielded 15 top-ranked "hits", which were tested for activity against KATP channels using patch clamping and thallium (Tl+) flux assays with a Kir6.2/SUR2A HEK-293 stable cell line. Several of the compounds increased Tl+ fluxes. One of them (CL-705G) opened Kir6.2/SUR2A channels with a similar potency as pinacidil (EC50 of 9 µM and 11 µM, respectively). Remarkably, compound CL-705G had no or minimal effects on other Kir channels, including Kir6.1/SUR2B, Kir2.1, or Kir3.1/Kir3.4 channels, or Na+ currents of TE671 medulloblastoma cells. CL-705G activated Kir6.2Δ36 in the presence of SUR2A, but not when expressed by itself. CL-705G activated Kir6.2/SUR2A channels even after PIP2 depletion. The compound has cardioprotective effects in a cellular model of pharmacological preconditioning. It also partially rescued activity of the gating-defective Kir6.2-R301C mutant that is associated with congenital hyperinsulinism. Conclusion: CL-705G is a new Kir6.2 opener with little cross-reactivity with other channels tested, including the structurally similar Kir6.1. This, to our knowledge, is the first Kir-specific channel opener.

11.
Nanoscale Horiz ; 8(8): 976-990, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37278697

RESUMO

With its long clinical history, traditional Chinese medicine (TCM) has gained acceptance for its specific efficacy and safety in the treatment of multiple diseases. Nano-sized materials study of Chinese herbal medicines (CHMs) leads to an increased understanding of assessing TCM therapies, which may be a promising way to illustrate the material basis of CHMs through their processing and extraction. In this review, we provide an overview of the nanostructures of natural and engineered CHMs, including extracted CHMs, polymer nanoparticles, liposomes, micelles, and nanofibers. Subsequently, the applications of these CHM-derived nanostructures to particular diseases are summarized and discussed. Additionally, we discuss the advantages of these nanostructures for studying the therapeutic efficacy of CHMs. Finally, the key challenges and opportunities for the development of these nanostructures are outlined.


Assuntos
Medicamentos de Ervas Chinesas , Nanoestruturas , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Nanoestruturas/uso terapêutico
12.
J Ethnopharmacol ; 317: 116665, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279813

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Zhi-Tiao-Gan-Tang or Qing-Zhi-Tiao-Gan Decoction (QZTGT) is based on the compatibility theory of traditional Chinese medicine (TCM), that is a combination of three classical formulae for the treatment of nonalcoholic fatty liver disease (NAFLD). Its pharmacodynamic material basis is made up of quinones, flavanones, and terpenoids. AIM OF THE STUDY: This study aimed to look for a promising recipe for treating nonalcoholic steatohepatitis (NASH), a more advanced form of NAFLD, and to use a transcriptome-based multi-scale network pharmacological platform (TMNP) to find its therapy targets. MATERIALS AND METHODS: A classical dietary model of NASH was established using MCD (Methionine- and choline-deficient) diet-fed mice. Liver coefficients like ALT, AST, serum TC, and TG levels were tested following QZTGT administration. A transcriptome-based multi-scale network pharmacological platform (TMNP) was used to further analyze the liver gene expression profile. RESULTS: The composition of QZTGT was analyzed by HPLC-Q-TOF/MS, a total of 89 compounds were separated and detected and 31 of them were found in rat plasma. QZTGT improved liver morphology, inflammation and fibrosis in a classical NASH model. Transcriptomic analysis of liver samples from NASH animal model revealed that QZTGT was able to correct gene expression. We used transcriptome-based multi-scale network pharmacological platform (TMNP) to predicted molecular pathways regulated by QZTGT to improve NASH. Further validation indicated that "fatty acid degradation", "bile secretion" and "steroid biosynthesis" pathways were involved in the improvement of NASH phenotype by QZTGT. CONCLUSIONS: Using HPLC-Q-TOF/MS, the compound composition of QZTGT, a Traditional Chinese prescription, was separated, analyzed and identified systematically. QZTGT mitigated NASH symptoms in a classical dietary model of NASH. Transcriptomic and network pharmacology analysis predicted the potential QZTGT regulated pathways. These pathways could be used as therapeutic targets for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Colina , Dieta , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
CNS Neurosci Ther ; 29(12): 3967-3979, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37349971

RESUMO

AIMS: MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS: Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS: MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION: MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Células-Tronco Neurais , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antagomirs/uso terapêutico , Caveolina 1/genética , Caveolina 1/metabolismo , Isquemia Encefálica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Infarto Cerebral , Neurogênese , Diferenciação Celular , Luciferases/metabolismo
14.
Pest Manag Sci ; 79(9): 3218-3226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37042232

RESUMO

BACKGROUND: Field control of pest thrips mainly relies on insecticides, but the toxicity of insecticides can vary among thrips species and populations. In this study, we examined the susceptibility of multiple field populations of two thrips pests, Frankliniella occidentalis, and Thrips palmi, that often co-occur on vegetables, to nine insecticides belonging to seven subgroups. RESULTS: The highest level of variation in susceptibility among F. occidentalis populations was for spinetoram (73.92 fold difference between most resistant and most susceptible population), followed by three neonicotinoids (8.06-15.99 fold), while among T. palmi populations, it was also for spinetoram (257.19 fold), followed by emamectin benzoate, sulfoxaflor, and acetamiprid (23.64-45.50 fold). These findings suggest evolved resistance to these insecticides in some populations of the two thrips. One population of F. occidentalis had a particularly high level of resistance overall, being the most resistant for five of the nine insecticides tested. Likewise, a population of T. palmi had high resistance to all nine insecticides, again suggesting the evolution of resistance to multiple chemicals. For F. occidentalis, the LC95 values of most populations were higher than the field-recommended dosage for all insecticides except chlorfenapyr and emamectin benzoate. For several T. palmi populations, the LC95 values also tended to be higher than recommended dosages, except in the case of emamectin benzoate and spinetoram. CONCLUSIONS: Our study found interspecific and intraspecific variations in the susceptibility of two thrips to nine insecticides and multiple resistance in some populations, highlighting the need for ongoing monitoring and resistance management. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Tisanópteros , Animais , Inseticidas/farmacologia , Macrolídeos
15.
Front Cell Infect Microbiol ; 13: 1145824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077525

RESUMO

Background: Toxoplasmosis caused by Toxoplasma gondii is a globally distributed zoonosis. Most infections appear asymptomatic in immunocompetent individuals, but toxoplasmosis can be fatal in fetuses and immunocompromised adults. There is an urgent need to research and develop effective and low-toxicity anti-T. gondii drugs because of some defects in current clinical anti-T. gondii drugs, such as limited efficacy, serious side effects and drug resistance. Methods: In this study, 152 autophagy related compounds were evaluated as anti-T. gondii drugs. The activity of ß-galactosidase assay based on luminescence was used to determine the inhibitory effect on parasite growth. At the same time, MTS assay was used to further detect the effects of compounds with over 60% inhibition rate on host cell viability. The invasion, intracellular proliferation, egress and gliding abilities of T. gondii were tested to assess the inhibitory effect of the chosen drugs on the distinct steps of the T. gondii lysis cycle. Results: The results showed that a total of 38 compounds inhibited parasite growth by more than 60%. After excluding the compounds affecting host cell activity, CGI-1746 and JH-II-127 were considered for drug reuse and further characterized. Both CGI-1746 and JH-II-127 inhibited tachyzoite growth by 60%, with IC50 values of 14.58 ± 1.52 and 5.88 ± 0.23 µM, respectively. TD50 values were 154.20 ± 20.15 and 76.39 ± 14.32 µM, respectively. Further research found that these two compounds significantly inhibited the intracellular proliferation of tachyzoites. Summarize the results, we demonstrated that CGI-1746 inhibited the invasion, egress and especially the gliding abilities of parasites, which is essential for the successful invasion of host cells, while JH-II-127 did not affect the invasion and gliding ability, but seriously damaged the morphology of mitochondria which may be related to the damage of mitochondrial electron transport chain. Discussion: Taken together, these findings suggest that both CGI-1746 and JH-II-127 could be potentially repurposed as anti-T. gondii drugs, lays the groundwork for future therapeutic strategies.


Assuntos
Toxoplasma , Toxoplasmose , Adulto , Animais , Humanos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Zoonoses , Proliferação de Células
16.
Am J Physiol Cell Physiol ; 324(5): C1017-C1027, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878847

RESUMO

Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuínas , Ratos , Camundongos , Humanos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , NAD/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Canais KATP/genética , Canais KATP/metabolismo
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970602

RESUMO

In this study, the underlying mechanism of Qiwei Guibao Granules(QWGB) in the treatment of premature ovarian fai-lure(POF) was explored by the proteomics technique. Firstly, the POF model was induced in mice by intragastric administration of Tripterygium wilfordii glycosides solution at 50 mg·kg~(-1) for 14 days. Ten days prior to the end of the modeling, the estrous cycle of mice was observed every day to evaluate the success of modeling. From the 1st day after modeling, the POF model mice were treated with QWGB by gavage every day and the treatment lasted four weeks. On the 2nd day after the end of the experiment, blood was collected from the eyeballs and the serum was separated by centrifugation. The ovaries and uterus were collected and the adipose tissues were carefully stripped. The organ indexes of the ovaries and uterus of each group were calculated. The serum estrogen(E_2) level of mice in each group was detected by ELISA. Protein samples were extracted from ovarian tissues of mice, and the differential proteins before and after QWGB intervention and before and after modeling were analyzed by quantitative proteomics using tandem mass tags(TMT). As revealed by the analysis of differential proteins, QWGB could regulate 26 differentially expressed proteins related to the POF model induced by T. wilfordii glycosides, including S100A4, STAR, adrenodoxin oxidoreductase, XAF1, and PBXIP1. GO enrichment results showed that the 26 differential proteins were mainly enriched in biological processes and cellular components. The results of KEGG enrichment showed that those differential proteins were involved in signaling pathways such as completion and coalescence cascades, focal adhesion, arginine biosynthesis, and terpenoid backbone biosynthesis. The complement and coalescence cascades signaling pathway was presumably the target pathway of QWGB in the treatment of POF. In this study, the proteomics technique was used to screen the differential proteins of QWGB in the treatment of POF in mice induced by T. wilfordii glycosides, and they were mainly involved in immune regulation, apoptosis regulation, complement and coagulation cascade reactions, cholesterol metabolism, and steroid hormone production, which may be the main mechanisms of QWGB in the treatment of POF.


Assuntos
Feminino , Humanos , Camundongos , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Proteômica , Transdução de Sinais , Glicosídeos/efeitos adversos
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-980749

RESUMO

OBJECTIVE@#To observe the effects of acupuncture on neurologic function and serum inflammatory factors in patients after thrombolysis in acute ischemic stroke (AIS).@*METHODS@#A total of 102 AIS patients with onset to treatment time (OTT) ≤3 h were randomly divided into an observation group and a control group, 51 cases each group. In the control group, thrombolysis and conventional medical treatment were applied. On the basis of the treatment as the control group, acupuncture at Shuigou (GV 26), Zhongwan (CV 12), Qihai (CV 6), Neiguan (PC 6), etc. was applied in the observation group, 30 min each time, once a day. Both groups were treated for 2 weeks. Before and after treatment, the scores of National Institutes of Health stroke scale (NIHSS), modified Rankin scale (mRS), modified Barthel index (MBI) and serum level of homocysteine (Hcy), hypersensitive C-reactive protein (hs-CRP) were compared, and the clinical efficacy was evaluated in the two groups.@*RESULTS@#After treatment, the scores of NIHSS, mRS and serum level of Hcy, hs-CRP were decreased compared with those before treatment (P<0.05), while the MBI scores were increased (P<0.05) in the two groups. The scores of NIHSS, mRS and serum level of Hcy, hs-CRP in the observation group were lower than those in the control group (P<0.05, P<0.01), the MBI score in the observation group was higher than that in the control group (P<0.01). The total effective rate was 88.2% (45/51) in the observation group, which was superior to 70.6% (36/51) in the control group (P<0.05).@*CONCLUSION@#Acupuncture could promote the recovery of neurologic function in patients after thrombolysis in AIS, improve the ability of daily living, which may be related to reducing the level of inflammatory factors, thus inhibiting inflammatory response and improving cerebral ischemia reperfusion injury.


Assuntos
Humanos , Estados Unidos , AVC Isquêmico , Proteína C-Reativa , Terapia por Acupuntura , Inflamação , Homocisteína , Hipersensibilidade , Terapia Trombolítica
20.
Front Genet ; 13: 957937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276938

RESUMO

A reducing sugar reacts with the protein, resulting in advanced glycation end-products (AGEs), which have been implicated in diabetes-related complications. Recently, it has been found that both type 1 and type 2 diabetic patients suffer from not only glucose but also ribose dysmetabolism. Here, we compared the effects of ribose and glucose glycation on epigenetics, such as histone methylation and demethylation. To prepare ribose-glycated (riboglycated) proteins, we incubated 150 µM bovine serum albumin (BSA) with 1 M ribose at different time periods, and we evaluated the samples by ELISAs, Western blot analysis, and cellular experiments. Riboglycated BSA, which was incubated with ribose for approximately 7 days, showed the strongest cytotoxicity, leading to a significant decrease in the viability of SH-SY5Y cells cultured for 24 h (IC50 = 1.5 µM). A global demethylation of histone 3 (H3K4) was observed in SH-SY5Y cells accompanied with significant increases in lysine-specific demethylase-1 (LSD1) and plant homeodomain finger protein 8 (PHF8) after treatment with riboglycated BSA (1.5 µM), but demethylation did not occur after treatment with glucose-glycated (glucoglycated) proteins or the ribose, glucose, BSA, and Tris-HCl controls. Moreover, a significant demethylation of H3K4, H3K4me3, and H3K4me2, but not H3K4me1, occurred in the presence of riboglycated proteins. A significant increase of formaldehyde was also detected in the medium of SH-SY5Y cells cultured with riboglycated BSA, further indicating the occurrence of histone demethylation. The present study provides a new insight into understanding an epigenetic mechanism of diabetes mellitus (DM) related to ribose metabolic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...